Space tensor conic programming
نویسندگان
چکیده
Space tensors appear in physics and mechanics, and they are real physical entities. Mathematically, they are tensors in the three-dimensional Euclidean space. In the research of diffusion magnetic resonance imaging, convex optimization problems are formed where higher order positive semi-definite space tensors are involved. In this short paper, we investigate these problems from the viewpoint of conic linear programming (CLP). We characterize the dual cone of the positive semi-definite space tensor cone, and study the CLP formulation and the duality of the positive semi-definite space tensor conic programming problem.
منابع مشابه
Semismoothness of the Maximum Eigenvalue Function of a Symmetric Tensor and its Application
In this paper, we examine the maximum eigenvalue function of an even order real symmetric tensor. By using the variational analysis techniques, we first show that the maximum eigenvalue function is a continuous and convex function on the symmetric tensor space. In particular, we obtain the convex subdifferential formula for the maximum eigenvalue function. Next, for an mth-order n-dimensional s...
متن کاملForthcoming in Mathematical Programming CONIC MIXED-INTEGER ROUNDING CUTS
A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures ...
متن کاملConic mixed-integer rounding cuts
A conic integer program is an integer programming problem with conic constraints.Manyproblems infinance, engineering, statistical learning, andprobabilistic optimization aremodeled using conic constraints. Herewe studymixed-integer sets definedby second-order conic constraints.We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second...
متن کاملA Tensor Analogy of Yuan's Theorem of the Alternative and Polynomial Optimization with Sign structure
Yuan’s theorem of the alternative is an important theoretical tool in optimization, which provides a checkable certificate for the infeasibility of a strict inequality system involving two homogeneous quadratic functions. In this paper, we provide a tractable extension of Yuan’s theorem of the alternative to the symmetric tensor setting. As an application, we establish that the optimal value of...
متن کاملControlling Sparseness in Non-negative Tensor Factorization
Non-negative tensor factorization (NTF) has recently been proposed as sparse and efficient image representation (Welling and Weber, Patt. Rec. Let., 2001). Until now, sparsity of the tensor factorization has been empirically observed in many cases, but there was no systematic way to control it. In this work, we show that a sparsity measure recently proposed for non-negative matrix factorization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 59 شماره
صفحات -
تاریخ انتشار 2014